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Abstract 

 
In a random vector functional link (RVFL) network, shortcomings such as local optimal 
stagnation and decreased convergence performance cause a reduction in the accuracy of 
illumination correction by only inputting the weights and biases of hidden neurons. In this 
study, we proposed an improved regularized random vector functional link (RRVFL) 
network algorithm with an optimized grey wolf optimizer (GWO). Herein, we first proposed 
the moth-flame optimization (MFO) algorithm to provide a set of excellent initial 
populations to improve the convergence rate of GWO. Thereafter, the MFO-GWO algorithm 
simultaneously optimized the input feature, input weight, hidden node and bias of RRVFL, 
thereby avoiding local optimal stagnation. Finally, the MFO-GWO-RRVFL algorithm was 
applied to ameliorate the performance of illumination correction of various test images. The 
experimental results revealed that the MFO-GWO-RRVFL algorithm was stable, compatible, 
and exhibited a fast convergence rate. 
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1. Introduction 

Illumination correction, also called illumination estimation or color constancy calculation 
[1-2], eliminates the influence of illumination on color, thereby obtaining the inherent color 
of the object itself. Although the conventional unsupervised illumination correction 
algorithm is uncomplicated and liable to achieve, it exhibits low performance when it does 
not meet the assumptions. Supervised illumination correction, a developed trend in the field 
of illumination correction, utilizes machine learning technology to construct the function of 
image color and illumination distribution, thereby providing better results.  

Back propagation (BP) neural networks, extreme learning machine (ELM), and support 
vector regression (SVR) are commonly used in illumination correction research. A method 
of illumination correction via BP neural network proposed in [3] offers continuous output 
results; however, it is susceptible to local optimum stagnation. The image illumination 
correction algorithm based on SVR proposed in [4] can obtain high-precision learning 
accuracy for small samples; however, it involves cumbersome parameter adjustment. Li et al. 
[5] proposed an illumination correction algorithm with grey-edge and ELM. ELM can 
effectively overcome the deficiencies of the traditional neural networks; however, it is 
susceptible to parameter randomness. Zhou [6] applied regularization to solve the drawback 
of a pathological solution to the output weight of the traditional random vector functional 
connection (RVFL); however, it cannot resolve the implicit layer bias and the randomness of 
the input weight matrix. 

Random weight networks such as ELM and RVFL exhibit fast learning. Although most 
traditional training techniques randomly select the connection weights and hidden biases for 
random weight networks, they still exhibit local optimization problems and degenerated 
convergence. In addition, adjusting the number of hidden neurons, determining the 
regularization factors, and selecting the appropriate transfer function in these kinds of 
random weight networks require time, energy, and human intervention.  
The metaheuristic algorithm is a random search algorithm based on computational 
intelligence that solves the optimal solution of complex majorization issues; it is usually 
aroused by the evolution of nature and the ways of living organisms, such as an artificial bee 
colony (ABC) [7], particle swarm optimization (PSO) [8], grey wolf optimizer (GWO) [9], 
brain storm optimization (BSO) [10], and moth-flame optimization (MFO) [11]. Neural 
network optimization techniques based on the metaheuristic algorithm can avoid local 
optimality and exhibit good flexibility. Therefore, they offer additional room for 
improvement in the research of optimization algorithms, thereby resulting in the emergence 
of more competitive optimization algorithms when compared with the existing algorithms. 
Wang [12] proposed an improved whale algorithm to optimize the image color constancy 
calculation of SVR. Liu [13] proposed an RVFL illumination estimation algorithm that is 
optimized using the whale optimization algorithm. Zhou [14] used the good global search 
ability of the differential evolution （DE） algorithm to iteratively optimize the ELM and 
solve its issue of random parameter setting. Han [15] adopted the improved PSO algorithm 
and the More-Penrose generalized inverse algorithm to select parameters. Typically, in 
RVFL and ELM, optimization algorithms optimize only the input weight and biases of 
hidden neurons; they are unable to resolve local optimal stagnation and reduced convergence 
performance [16]. 

Inspired by the references [17-19], it is different from their optimization of only two 
parameters. This study proposes an illumination correction method using an improved grey 
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wolf optimizer to obtain a regularized random vector functional link (RRVFL) network. The 
master contributions of this paper are as follows: 
1) The MFO optimizer provides a set of excellent initial populations for GWO to remove 
the effect of the population initialization and ameliorate the convergence speed and 
optimization effect of the GWO. 
2) Since solely optimizing the parameters causes local optimal stagnation and reduced 
convergence performance, the MFO-GWO method is applied to simultaneously ameliorate 
the input characteristics, hidden nodes, bias, and input weights of the RRVFL network, 
thereby avoiding local optimal stagnation, obtaining reasonable accuracy results, and 
reducing the influence of human intervention to adjust the experimental parameters. 
3) Analyzing the box diagram with the angle and chromaticity errors revealed that the 
proposed MFO-GWO-RRVFL algorithm exhibited good stability, nil outliers, and a small 
median error. In addition, it offers good predictive stability and excellent performance in the 
ten-fold cross-validation. 
4) When compared with GMO-RRVFL, MFO-RRVFL, ABC-RRVFL, BSO-RRVFL, and 
PSO-RRVFL, the proposed MFO-GWO-RRVFL algorithm offers faster convergence speed 
and high illumination correction accuracy. 

2. Related Work 

In this section, we introduce principle of optimization algorithms and color constancy and 
narrate preparative job of color constancy. 

2.1 Optimization algorithm 

In engineering design, the optimization algorithm mainly selects a set of parameters 
(variables) to find the optimal value of the design index (target) among all the constraints. 
Before using the optimization algorithm to solve the actual problem, it is necessary to clarify 
the objective function (fitness function) required by the optimization algorithm, the 
parameters and constraints that need to be optimized. Optimization algorithms are mainly 
divided into exact methods (Exact Approaches) and heuristic algorithms. 
The precise method [20] mainly proposes a mathematical model for a specific problem 
through mathematical modeling and solves the mathematical model through an optimization 
algorithm to get the optimal way of the issue. If the mathematical model is well designed, the 
solution obtained by the precise method can theoretically be optimal, but as the scale of the 
problem expands, this method becomes very laborious and cannot obtain the optimal 
solution in a limited time. S. Fateme Attar et al. [21] proposes a mixed integer programming 
model (MIP) to resolve the electric vehicle production routing issue. 
A heuristic algorithm is a problem-oriented algorithm [22] that a feasible solution can be 
obtained under the constraints of space and time, but this is not necessarily the optimal 
solution. There are two types of heuristic algorithms, namely meta-heuristic algorithm, and 
traditional heuristic algorithm. Traditional heuristic algorithms include relaxation methods, 
stereotype methods, and steepest descent methods [23]. We improve on the traditional 
heuristic algorithm and get the meta-heuristic algorithm. This class of algorithms combines 
stochastic algorithms with local search. The difference between it and the traditional 
heuristic algorithm is whether there is a "random factor". A meta-heuristic [24] is an iterative 
process that continuously brings candidate solutions closer to the optimal solution with a 
strategy. The meta-heuristic algorithm needs to explore and develop the search stewardess, 
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explore to avoid the algorithm from entering the local optimal solution, and develop and 
improve the local search ability of the algorithm. Common meta-heuristic algorithms include 
ABC, PSO, GWO, MFO, and other optimization algorithms. These meta-heuristic 
optimization algorithms all contain the idea of swarm intelligence optimization and simulate 
the swarming behavior of animal populations in the real world. In fact, there has been a lot of 
work on improving the initial population of optimization algorithms, such as opposition 
based on learning [25], chaotic mapping [26] and Levi flight, etc. However, the initialization 
of these methods is not ideal, so we try to simply initialize the population with another 
optimization algorithm. Although this method will make the algorithm spend more time in 
the population initialization phase, this consumption is worth it, it can allow the subsequent 
optimization algorithm to obtain a better initial population, thereby effectively ameliorating 
the astringent speed of the entire arithmetic (the algorithm takes less time to reach 
convergence after initialization). Therefore, the computational cost of the entire algorithm 
does not increase significantly. 

2.2 Color constancy 

Color constancy [27] is an ability of the human visual adaptive system. Its main function is 
to ensure that the color perceived by vision maintains a relatively constant value under 
changing lighting conditions. The main methods to solve the problem of color constancy are 
partitioned into two Kinds: Statistics-based methods [28-32] and learning-based methods [12, 
13, 33-36]. Statistical-based methods generally do not rely on the prior knowledge of the 
sample, and directly use the image information of the sample to estimate the illumination 
during image imaging. This method is fast, but the algorithm is not robust and suitable for 
ideal scenarios. The learning-based method makes full use of the training data to train the 
model. Although this method takes a lot of time to train the model, the model after the 
training has a relatively good performance. Wang [12] proposed a method based on a support 
vector machine to resolve the issue of color constancy. Partha et al. [35] applied the 
adversarial neural network to resolve the color constancy’s issue, and proposed Color 
Constancy GANs (CC-GANs). There are three GANs methods used in the paper: Pix2Pix, 
CycleGAN, and StarGAN. et al. [36] applied multi-domain learning to solve the problem of 
color constancy. Multi-domain learning used training data from distinct equipment to train 
an uncomplicated model, learn complementary representations, and ameliorate 
generalization performance. They put forward a multi-domain color constancy method 
(MDICC). 

3. Methodology 

In this section, we discuss our raised illumination correction algorithm (MFO-GWO-
RRVFL). We first introduce the theoretical underpinnings of the three components on which 
the method depends. Then, we'll describe how we made these three components work 
together to make up the overall illumination correction algorithm. 

3.1 Regularized random vector functional link (RRVFL) network 

RVFL has been developed from RVFL [37], it uses regularisation parameters and minimises 
training error to regulate the output weight. 
 𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽
𝐶𝐶‖𝑦𝑦 − 𝐻𝐻𝐻𝐻‖22 + ‖𝐻𝐻‖22 (1) 
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After constraint optimization, 
 𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽
𝐶𝐶‖𝑒𝑒‖22 + ‖𝐻𝐻‖22 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑦𝑦 − 𝐻𝐻𝐻𝐻 = 𝑒𝑒 (2) 

Lagrange is defined as: 
 𝐿𝐿(𝐻𝐻, 𝑒𝑒, 𝜆𝜆) = 𝐶𝐶‖𝑒𝑒‖22 + ‖𝐻𝐻‖22 + 𝜆𝜆𝑇𝑇(𝑦𝑦 − 𝐻𝐻𝐻𝐻 − 𝑒𝑒) (3) 
and contains 𝑁𝑁 training error variables in 𝑒𝑒 = [𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑁𝑁]𝑇𝑇. According to the Karnush-
Kuhn-Tucker (KKT) theorem, we obtain 
 

𝐻𝐻 = �𝐻𝐻𝑇𝑇𝐻𝐻𝐶𝐶 +
𝐼𝐼
𝐶𝐶
�
−1
𝐻𝐻𝑇𝑇𝑦𝑦 

 
(4) 

If N < L, 
 

𝐻𝐻 = 𝐻𝐻𝑇𝑇 �𝐻𝐻𝑇𝑇𝐻𝐻 +
𝐼𝐼
𝐶𝐶
�
−1
𝑦𝑦 

 
(5) 

3.2 Grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithms 

GWO has been aroused by the chase behaviour of grey wolves. The GWO algorithm 
identifies three leading wolves, denoted as α, β, and δ, as the best solution, and directs the 
remaining wolves, denoted as ω, to the region of alternative solutions, thereby finding the 
global solution. Wolf chase involves three primary steps: encircling, hunting, and assaulting 
the quarry. To simulate the event of the grey wolves surrounding prey, the positions of α, β 
or δ are updated as follows:  
 𝐷𝐷 = �𝐶𝐶 × 𝑋𝑋𝑝𝑝(𝑠𝑠) − 𝑋𝑋(𝑠𝑠)� (6) 
 𝑋𝑋(𝑠𝑠 + 1) = 𝑋𝑋𝑝𝑝(𝑠𝑠) − 𝐴𝐴 × D (7) 
where 𝑠𝑠 represents the current iteration number, 𝑋𝑋𝑝𝑝(𝑠𝑠) represents the current prey position, 
𝑋𝑋(𝑠𝑠) represents the current wolf position, and 𝐷𝐷 represents the distance between the wolf 
and the prey. The coefficient vector 𝐴𝐴 and 𝐶𝐶 are calculated as follows:  
 𝐴𝐴 = 2𝑎𝑎𝑟𝑟1 − 𝑎𝑎 (8) 
 𝐶𝐶 = 2𝑟𝑟2 (9) 
where 𝑟𝑟1 and 𝑟𝑟2 represent random vectors between 0 and 1, and 𝑎𝑎 decreases linearly from 2 
to 0 with an increase in iterations.  
Hunting: By preserving the first three best solutions with α, β, and δ, the grey wolf 
community updates its position as follows: 
 𝐷𝐷𝛼𝛼 = |𝐶𝐶1 • 𝑋𝑋𝛼𝛼 − 𝑋𝑋| (10) 
 𝐷𝐷𝛽𝛽 = �𝐶𝐶2 • 𝑋𝑋𝛽𝛽 − 𝑋𝑋� (11) 
 𝐷𝐷𝛿𝛿 = |𝐶𝐶3 • 𝑋𝑋𝛿𝛿 − 𝑋𝑋| (12) 
where 𝑋𝑋𝛼𝛼, 𝑋𝑋𝛽𝛽, and 𝑋𝑋𝛿𝛿  represents the position of α, β, and δ, respectively; 𝑋𝑋 represents the 
location of the operating solution; and 𝐶𝐶1, 𝐶𝐶2, and 𝐶𝐶3, are randomly generated vectors. The 
aftermost location of the operating solution is shown as follows: 
 𝑋𝑋1 = 𝑋𝑋𝛼𝛼 − 𝐴𝐴1 • 𝐷𝐷𝛼𝛼  (13) 
 𝑋𝑋2 = 𝑋𝑋𝛽𝛽 − 𝐴𝐴2 • 𝐷𝐷𝛽𝛽  (14) 
 𝑋𝑋3 = 𝑋𝑋𝛿𝛿 − 𝐴𝐴3 • 𝐷𝐷𝛿𝛿  (15) 
 𝑋𝑋(𝑠𝑠 + 1) =

𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3
3

  
(16) 

where, 𝐴𝐴1, 𝐴𝐴2, and 𝐴𝐴3 are random vectors, and 𝑠𝑠 represents the number of iterations. MFO 
utilizes two populations of moth and flame to respectively represent the candidate solution 
and the optimal solution of the algorithm. To avoid letting GWO fall into a local optimum, 
this study proposes the utilization of the MFO algorithm to initialise the GWO algorithm 
population. 
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3.3 Proposed illumination correction algorithm 

The proposed MFO-GWO-RRVFL algorithm uses MFO-GWO to simultaneously optimize 
the input feature and weight, hidden bias and node of RRVFL. The MFO in MFO-GWO 
provides an excellent initial population for GWO, thereby improving its convergence speed. 
Primarily, the optimization process determines the number of parameters that can be 
optimized by pre-setting the maximum network of RRVFL. Thereafter, the corresponding 
hidden bias and input weights are selected via effective hidden nodes and input nodes, 
respectively. The proposed algorithm was obtained by combining MFO-GWO and the 
parameter optimization method to subsequently optimize RRVFL. 

In RRVFL, the random generation of parameters leads to a poor training effect. To 
optimise this shortcoming, an optimisation algorithm can conduct an automatic search for 
optimal parameters and ameliorate the prediction performance of the RRVFL network. In 
this study, the root mean square error (RMSE) of the predicted value and the true value was 
selected as the fitness function and expressed as: 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ ��∑ 𝐻𝐻𝑗𝑗𝑔𝑔(𝑤𝑤𝑗𝑗𝑋𝑋𝑖𝑖 + 𝑠𝑠𝑗𝑗) + ∑ 𝐻𝐻𝑗𝑗𝑋𝑋𝑖𝑖𝑗𝑗𝐿𝐿+𝑑𝑑
𝑗𝑗=𝐿𝐿+1

𝐿𝐿
𝑗𝑗=1 � − 𝑠𝑠𝑗𝑗�2

2𝑁𝑁
𝑖𝑖=1

𝑚𝑚 × 𝑁𝑁
 

 
   (17) 

 
 

where 𝑑𝑑, 𝐿𝐿, 𝑚𝑚, and 𝑁𝑁 represent the quantity of RRVFL hidden layer nodes, input nodes, 
output vectors, and samples, respectively. 

The flow chart of the MFO-GWO-RRVFL algorithm is displayed in Fig. 1. In the 
algorithm process of MFO-GWO-RRVFL, the parameters of the optimised algorithm 
population corresponding to RRVFL were primarily completed through mapping and 
screening; Fig. 2 is a schematic diagram of its structure. The input and hidden nodes were 
mapped as 0 or 1 by rounding the number between [-1, 1]. If the obtained result was 1, the 
feature or node was used (valid node); if the obtained result was 0, the feature or node was 
not used (invalid node). The input weights and implicit layer bias matrices were screened 
and rearranged according to the valid features or nodes (the all-black matrix displayed on the 
right side in Fig. 2). The optimisation goal was completed after reaching the maximum 
number of iterations. Thereafter, the abovementioned mapping and screening methods were 
utilized to select the effective parameters and obtain the optimised illumination prediction 
model. 
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Fig. 1. Flow chart of the proposed MFO-GWO-RRVFL algorithm. 
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Fig. 2. Population structure and parameters represented by each segment of the MFO-GWO-

RRVFL algorithm. 
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4. Experimental results and analysis 

We selected the GWO-RRVFL, MFO-RRVFL, ABC-RRVFL, BSO-RRVFL, PSO-RRVFL, 
RRVFL, RELM, BP, and SVR algorithms for comparison with proposed MFO-GWO-
RRVFL illumination correction algorithm. The process for optimising RRVFL using GWO, 
MFO, ABC, BSO, and PSO was identical to MFO-GWO.  

4.1 Pre-processing of data sets 

From the SFU Lab [38] datasets, 321 images were taken from 31 laboratory scenes under 11 
different light sources, including three different fluorescent lamps, four incandescent lamps, 
and four incandescent lamps with colour filters. We employed the grey edge algorithm as an 
efficient feature extraction framework rather than a calculation method. By changing the 
parameters, the chromaticity value was calculated as a feature based on the current 
parameters. In this experiment, for 𝑚𝑚 ∈ {0,1,2}, 𝑝𝑝 ∈ {1,2, . . . ,10}, and 𝜎𝜎 = {1,3,5,7,9}, 150 
values could be obtained for each chromaticity. Therefore, a total of 300 features could be 
obtained for 𝑟𝑟 and 𝑔𝑔 chromaticity.  

4.2 Performance evaluation indicators 

In the experiment, 10 algorithms were trained to obtain the corresponding prediction models, 
and each model was estimated the chromaticity of illumination. Then, the chromaticity error 
and angle error of each algorithm are calculated to assess the property of every algorithm. 
Finally, the angle error and chromaticity error were statistically analysed, and four statistical 
values were obtained: the error's mean (Mean), the error's median (Median), the average of 
the optimal 25% (Best25), and the average of the worst 25% (Worst25). 

4.3 Experimental parameter setting 

4.3.1 Parameter selection of MFO-GWO-RRVFL algorithm 

To assess the property of the raised MFO-GWO-RRVFL model, we first determined the 
parameter optimisation range of the RRVFL network. The MFO-GWO algorithm optimised 
four parameters for RRVFL, namely input feature, hidden node and bias, and input weight. 
The maximum dimension of the hidden bias and input weight was determined by the upper 
search limit of the input feature and the hidden node, respectively. Using the grey edge 
algorithm, we abstracted a whole of 300 dimensional traits; therefore, the maximum search 
of the input node was 300. The efficient feature training model in the 300-dimensional 
feature was automatically selected by the optimisation algorithm. The maximum hidden 
nodes was 600. The activation function and the regularisation coefficients were set to 
sigmoid and 100, respectively. We determined the population number and the largest 
quantity of iterations as they both affect the optimisation effect of the MFO-GWO algorithm. 
Conventionally, a larger population and a larger number of maximum iterations correspond 
to a better convergence effect. In addition, both parameters are proportional to the 
calculation time. Therefore, in the practical application process, to obtain a good 
optimisation effect, a minimum number of population and maximum iterations should be 
selected. We selected the value range of the population number and the maximum iteration 
to be {5, 10, ..., 50} and {20, 40, ..., 200}, respectively. We performed three experiments for 
each parameter combination to obtain the average fitness values, as displayed in Table 1. 
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Table 1. Average fitness under different population numbers and iterations. 
Max iteration 

Pop size 20 40 60 80 100 120 140 160 180 200 
5 0.01339 0.01197 0.01054 0.00960 0.00804 0.00781 0.00766 0.00718 0.00670 0.00689 
10 0.01344 0.01118 0.01074 0.00872 0.00841 0.00801 0.00799 0.00733 0.00699 0.00707 
15 0.01288 0.01041 0.00941 0.00866 0.00798 0.00797 0.00772 0.00720 0.00688 0.00692 
20 0.01229 0.01075 0.01006 0.00836 0.00824 0.00780 0.00784 0.00718 0.00710 0.00673 
25 0.01207 0.01001 0.00914 0.00852 0.00761 0.00777 0.00748 0.00695 0.00691 0.00702 
30 0.01224 0.01012 0.00903 0.00856 0.00800 0.00818 0.00754 0.00715 0.00686 0.00700 
35 0.01236 0.00950 0.00952 0.00844 0.00811 0.00790 0.00782 0.00703 0.00708 0.00707 
40 0.01221 0.00943 0.00918 0.00864 0.00793 0.00795 0.00721 0.00701 0.00703 0.00684 
45 0.01191 0.00990 0.00985 0.00883 0.00773 0.00760 0.00724 0.00722 0.00695 0.00688 
50 0.01189 0.01008 0.00968 0.00869 0.00775 0.00780 0.00750 0.00702 0.00683 0.00687 

 
Fig. 3 illustrates the changes in the fitness of the proposed MFO-GWO-RRVFL 

algorithm with distinct parameter combinations. As per the figure, the value of the 
population number had negligible influence on the algorithm fitness. Although when the 
population number increased from 5 to 20, the fitness decreased significantly, when the 
population number was greater than 20, it barely affected the fitness. Therefore, to obtain a 
better optimisation effect, the population number was taken as 20. In contrast, the value of 
maximum iterations had a significant impact on the fitness. When the maximum quantity of 
iterations increased from 20 to 200, the fitness decreased continuously and eventually 
decreased by approximately 50%. 

 

 
Fig. 3. Changes in algorithm fitness under distinct values of population numbers and maximum 

iterations. 
 
To get the suitable quantity of maximum iterations, we constructed a fitness contour 

map as displayed in Fig. 4. As per the figure, when the value of maximum iterations 
increased from 20 to 100, the fitness contour lines were denser, indicating a rapidly 
decreasing fitness. When this value increased from 100 to 200, the fitness contour lines were 
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sparse, suggesting that the fitness decreased slowly in this process. In addition, when the 
values of maximum iterations were 100 and 200, the running time of the algorithm doubled. 
Therefore, considering the optimisation effect and algorithm running time, the value for 
maximum number of iterations was set to 100. 

 
Fig. 4. Fitness contour lines under different values of population numbers and maximum iterations. 

4.3.2 The other algorithms’ parameter selection 

To make sure fairness in the experimental outcomes, we attempted to ensure the consistency 
of the parameters for the comparison algorithms. Like MFO-GWO, for GWO-RRVFL, 
MFO-RRVFL, ABC-RRVFL, BSO-RRVFL, and PSO-RRVFL, the optimum value of 
population number and maximum iteration of GWO, MFO, ABC, BSO, and PSO are set to 
20 and 100, respectively. The search upper limit of the hidden layer node and the input 
feature were consistent with the MFO-GWO-RRVFL algorithm as well, at 300 and 600, 
respectively. The parameter settings of RRVFL, RELM, BP, and SVR algorithms have been 
summarised in Table 2. For the other parameters, the default values of the MATLAB 
toolbox were employed. 

 
Table 2. Some parameters of RRVFL, RELM, BP and SVR. 

Algorithm Parameter Value 

RRVFL 
Number of hidden layer nodes 600 

Activation function Sigmoid 
Regularisation coefficient 100 

RELM 
Number of hidden layer nodes 600 

Activation function Sigmoid 
Regularisation coefficient 100 

BP Learning rate 0.05 
Training times 600 

SVR Kernel function RBF 
Penalty parameter 2.2 
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4.4 Discussion of experimental results 

4.4.1 Comparison of the illumination correction effect 

To confirm the illumination correction effect of the proposed MFO-GWO-RRVFL algorithm, 
we first trained these predictive models on the training set of three datasets and then used the 
trained predictive model to predict the test set of the three datasets, and finally recorded the 
prediction results and calculated the angular error, chromaticity error, and the four statistical 
values of the error of each illumination prediction model on the SFU Lab datasets. 

As can be seen from Tables 3-4, the angle and chromaticity errors of the proposed 
MFO-GWO-RRVFL algorithm were the lowest in most indexes, except for the median 
chromaticity error being slightly greater than that of the ABC-RRVFL, GWO-RRVFL, and 
PSO-RRVFL algorithms. In terms of angle error, the mean errors of the proposed MFO-
GMO-RRVFL algorithm were 21.5%, 9.8%, 28.3%, 36.1%, 23.9%, 44.3%, 45.3%, 65.1%, 
and 58.8% lower than those of the GMO-RRVFL, MFO-RRVFL, ABC-RRVFL, BSO-
RRVFL, PSO-RRVFL, RRVFL, RELM, BP and SVR methods, respectively. On 
chromaticity error, the average error of the proposed MFO-GWO-RRVFL algorithm was 
lower than the GMO-RRVFL, MFO-RRVFL, ABC-RRVFL, BSO-RRVFL, PSO-RRVFL, 
RRVFL, RELM, BP and SVR algorithms by 21.1%, 11.4%, 31.1%, 34.9%, 26.6%, 44.2%, 
43.2%, 63.5%, and 56.4%, respectively.  

 
Table 3. Angle errors comparisons on SFU lab (minimum values are displayed in bold) 

Algorithm Mean Median Best25 Worst25 
MFO-GWO-RRVFL 1.190  1.051  1.518  2.459  

GWO-RRVFL 1.516  1.068  1.980  3.600  
MFO-RRVFL 1.319  1.074  1.659  2.673  
ABC-RRVFL 1.660  0.884  2.133  4.303  
BSO-RRVFL 1.862  1.074  2.422  4.581  
PSO-RRVFL 1.564  0.992  2.008  3.593  

RRVFL 2.137  1.091  2.764  5.697  
RELM 2.175  1.151  2.855  5.924  

BP 3.406  2.779  4.194  6.671  
SVR 2.890  2.261  3.656  6.355  

Table 4. Chromaticity error comparisons on SFU lab (minimum value is displayed in bold) 
Algorithm Mean Median Best25 Worst25 

MFO-GWO-RRVFL 9.484E-03 8.025E-03 1.192E-02 1.895E-02 
GWO-RRVFL 1.202E-02 7.072E-03 1.563E-02 2.924E-02 
MFO-RRVFL 1.070E-02 9.322E-03 1.346E-02 2.111E-02 
ABC-RRVFL 1.376E-02 6.119E-03 1.768E-02 3.618E-02 
BSO-RRVFL 1.456E-02 8.418E-03 1.891E-02 3.673E-02 
PSO-RRVFL 1.292E-02 7.350E-03 1.668E-02 3.091E-02 

RRVFL 1.700E-02 9.053E-03 2.184E-02 4.440E-02 
RELM 1.671E-02 9.591E-03 2.182E-02 4.411E-02 

BP 2.602E-02 2.078E-02 3.178E-02 5.155E-02 
SVR 2.175E-02 1.624E-02 2.733E-02 4.567E-02 

 
Figs. 5-14 display the line graph of the illumination chromaticity prediction results the 

actual results of RRVFL optimized with MFO-GWO, GWO, MFO, ABC, BSO, PSO 
respectively, RRVFL, RELM, BP, and SVR algorithms on the SFU Lab test set, respectively. 
For all the figures, (a) and (b) display the predicted results of the 𝑟𝑟 and 𝑔𝑔 chromaticity, 
respectively. According to the figures, the prediction accuracy of the proposed MFO-GWO-
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RRVFL algorithm was higher than the other algorithms. In addition, the predicted values of 
the 𝑟𝑟 chromaticity and 𝑔𝑔 chromaticity deviated negligibly from the real values. To evaluate 
the prediction errors of each algorithm on the test set more intuitively, the bands of 𝑟𝑟 
chromaticity and 𝑔𝑔  chromaticity prediction errors were drawn for all the algorithms, as 
displayed in Fig. 15 and Fig. 16, respectively. As expected, the proposed MFO-GWO-
RRVFL algorithm exhibited excellent prediction performance. The 𝑟𝑟  and 𝑔𝑔  chromaticity 
prediction errors for all test samples were quite small. When compared with the other 
algorithms, the error fluctuation was gentle, thereby indicating a stable prediction effect. It 
was rare for the predicted value to deviate extensively from the real value in a certain test 
sample, like other algorithms. 

 

  
(a) (b) 

Fig. 5. Illumination prediction results of MFO-GWO-RRVFL. 

  
(a) (b) 
Fig. 6. Illumination prediction results of GWO-RRVFL. 

  
(a) (b) 
Fig. 7. Illumination prediction results of MFO-RRVFL. 
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(a) (b) 
Fig. 8. Illumination prediction results of ABC-RRVFL. 

  
(a) (b) 
Fig. 9. Illumination prediction results of BSO-RRVFL. 

  
(a) (b) 
Fig. 10. Illumination prediction results of PSO-RRVFL. 

  
(a) (b) 

Fig. 11. Illumination prediction results of RRVFL. 
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(a) (b) 

Fig. 12. Illumination prediction results of RELM. 

  
(a) (b) 

Fig. 13. Illumination prediction results of BP. 

  
(a) (b) 

Fig. 14. Illumination prediction results of SVR. 

 
Fig. 15. Bands of 𝑟𝑟 chromaticity error of all individual algorithms. 
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Fig. 16. Bands of 𝑔𝑔 chromaticity error of all individual algorithms. 

 
In conclusion, the proposed MFO-GWO-RRVFL algorithm exhibited favourable 

prediction performance. When compared with the MFO-RRVFL and GWO-RRVFL 
algorithms, the prediction performance had improved to a lesser extent; however, when 
compared with the ABC-RRVFL, BSO-RRVFL, PSO-RRVFL, RELM, RRVFL, BP, and 
SVR, the prediction performance had improved substantially. 

4.4.2 Comparison of image correction effects 

After predicting the chromaticity of the test set samples according to the trained model, we 
used the von Kries diagonal transformation to correct the image under non-standard 
illumination to an image under standard illumination. To display the correction effect 
directly, this study took a test set image as an example. Fig. 17 shows the non-standard 
illumination image, standard illumination image, and the illumination corrected image using 
the MFO-GWO-RRVFL, MFO-RRVFL, GWO-RRVFL, ABC-RRVFL, BSO-RRVFL, 
PSO-RRVFL, RRVFL, RELM, BP, and SVR, respectively. In terms of the test set picture, 
the proposed MFO-GWO-RRVFL algorithm, and the MFO-RRVFL and GWO-RRVFL 
algorithms portrayed a better correction effect, essentially eliminating the influence of 
illumination colour. However, images after illumination correction using ABC-RRVFL, 
BSO-RRVFL, PSO-RRVFL, RRVFL, and RELM appeared green, whereas the images after 
illumination correction using BP and SVR algorithms appeared red. The reddened effect was 
considered more unfavourable. 
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(a)Non-standard 
illumination images 

(b)Standard illumination 
images 

(c) MFO-GWO-RRVFL (d) GWO-RRVFL 

    
(e) MFO-RRVFL (f) ABC-RRVFL (g) BSO-RRVFL (h) PSO-RRVFL 

    
(i) RRVFL (j) RELM (k) BP (l) SVR 

Fig. 17. Effect of each algorithm on image correction. 
 

4.5 Stability and convergence of the algorithm 

4.5.1 Analysis of stability 

To analyse proposed MFO-GWO-RRVFL algorithm and other comparison algorithms, we 
employed a tenfold cross-validation means to test all the algorithms. The dataset was 
grouped into 10 folds, and in turn, nine folds were used for training. The remaining one-fold 
was utilized for predicting and calculating the average angle blunder and the chromaticity 
blunder. The respective angle and chromaticity error box diagram drawn according to the 
experimental results are displayed in Fig. 18 and Fig. 19. The blue illustrations in each 
figure represent the upper and lower quartiles, and encased within them is the corresponding 
error distribution. The height of the blue box is inversely proportional to the density of the 
data error distribution. As a result, the angle and chromaticity errors distribution of the 
MFO-GWO-RRVFL, ABC-RRVFL, and PSO-RRVFL algorithms were more concentrated, 
thereby exhibiting good stability. Next, the position of the red markers (outliers) and red 
lines (median errors) were analysed. The proposed MFO-GWO-RRVFL algorithm exhibited 
good predictive stability with no outliers. In addition, its median error was lower than the 
other comparison algorithms. Overall, the proposed algorithm exhibited the best overall 
performance in the ten-fold cross-validation. 
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Fig. 18. Angle error box diagram of each algorithm. 

 
Fig. 19. Chromaticity error box diagram of each algorithm. 

Table 5 is obtained by calculating the standard deviation. From Table 9, we can 
observe that the standard deviation of the two error indicators of our proposed method is the 
smallest, and there is a certain gap in the second place, which a difference is 0.046 and 
1.938E-04 respectively. This again proves that our proposed method has good robustness. 

Table 5. STDEV of angle error and chromaticity error 
Algorithm STDEV of angle error STDEV of chromaticity error 

MFO-GWO-RRVFL 0.050  4.461E-04 
GWO-RRVFL 0.214  1.618E-03 
MFO-RRVFL 0.129  1.718E-03 
ABC-RRVFL 0.172  8.917E-04 
BSO-RRVFL 0.216  1.299E-03 
PSO-RRVFL 0.197  1.247E-03 

RRVFL 0.096  6.399E-04 
RELM 0.146  9.231E-04 

BP 0.180  1.256E-03 
SVR 0.217  1.695E-03 
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4.5.2 Iterative curve analysis for convergence 

The convergence speed and effect are important criteria for evaluating an optimisation 
algorithm. Therefore, to analyse the convergence performance of the proposed algorithm, we 
set the iterations’ maximum quantity to 200, and each of the MFO-GWO-RRVFL, MFO-
RRVFL, GWO-RRVFL, ABC-RRVFL, BSO-RRVFL, and PSO-RRVFL were run 10 times. 
The final convergence results were sorted from large to small, and the experimental results in 
the fifth place were selected to draw the convergence curve. Fig. 20 displays the changes in 
the fitness of each algorithm during the optimisation process. As per the figure, the proposed 
MFO-GWO-RRVFL algorithm exhibited the fastest convergence speed. Although low 
fitness was achieved after 20 iterations, the convergence effect was the best after 200 
iterations, thereby suggesting that the algorithm could always find better parameters when 
compared with other algorithms during optimisation; this is beneficial for training a better 
illumination prediction model. 

 

Fig. 20. Comparison of the convergence speed of optimisation algorithms. 

4.6 Comparison of the significance level parameter of the algorithms 
Table 6. Wilcoxon signed rank test results of angle errors of each algorithm  

(𝑝𝑝 values less than 0.05 are underlined). 
Proposed algorithm Compared algorithm 𝑝𝑝 value 

MFO-GWO-RRVFL 
 

GWO-RRVFL 0.175 
MFO-RRVFL 3.877E-02 
ABC-RRVFL 1.1865E-02 
BSO-RRVFL 2.161E-03 
PSO-RRVFL 1.514E-02 

RRVFL 1.186E-02 
RELM 3.993E-03 

BP 2.000E-07 
SVR 1.882E-04 

To analyse whether the prediction performance of the proposed MFO-GWO-RRVFL 
was substantially different than the other algorithms, we employed the Wilcoxon signed rank 
test to calculate the angular errors of all the algorithms in the test samples. The parameter of 
significance level  𝑝𝑝 was set to 0.05. We use the Wilcoxon signed-rank test to compare the 
results of the two algorithms, 𝑝𝑝 was obtained as less than 0.05, thereby indicating that the 
two algorithms’ error distributions were substantially different. Table 5 presents the test 
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results for the angle errors of each algorithm for the same test set. As per the table, the 
prediction error distribution of the proposed MFO-GWO-RRVFL algorithm was 
considerably different from that of other algorithms except GWO-RRVFL, whereas its 
prediction performance of compared to GWO-RRVFL on the test set was somewhat similar. 

5. Discussion 

In order to verify the proposed method in different scenarios, we conducted related 
experiments on three other datasets: Simple Cube++ [39], Colour Checker [40] and SFU 
Grey-ball [41]. 

Simple Cube++: The Simple Cube++ contains 2234 images from Cube++. It is a small 
and simple version of Cube++, but it contains all the scenarios that cube++ has, and all the 
pictures were downscaled to 648*432 size, and the dataset changed from the original 200G 
to 2G. 

Colour Checker: The Colour Checker dataset contains 568 high-quality images captured 
by two models of Canon cameras in two natural scenes, indoor and outdoor. A standard 24-
color chart is placed in each of these images, and information about the position of the color 
card in the image is provided. 

SFU Grey-ball:  The SFU Grey-ball dataset is a large image set contains more than 
11000 images of indoor and outdoor lighting scenes. The light source color value is obtained 
through a gray ball bound to the camera. The source data is about 2 hours' video of outdoor 
and indoor daily scenes in Vancouver and Scottsdale captured by Sony VX-2000 digital 
camera. 

We divide the three datasets into training sets and training sets, where the original 
Simple Cube++ has been divided into original datasets and the Colour Checker and the SFU 
Grey-ball divide the datasets 9:1. Then we performed the same experiment as 4.3.1 and got 
the test results as shown in Tables 7-12. 
Simple Cube++: 
As can be seen from Tables 7-9, the SVR algorithm has obtained the best results in all 
indicators and seems to perform perfectly better in Simple Cube++ than the algorithm 
proposed. The algorithm we proposed won second place in all indicators. Among them, the 
average angle error and the average Chromaticity error differ from the SVR algorithm by 
0.419 and 3.47E-03, respectively. 

 
Table 7. Angle errors comparisons on Simple Cube++ 

Algorithm Mean Median Best25 Worst25 
MFO-GWO-RRVFL 2.681  1.854  0.498  6.124  

GWO-RRVFL 3.097  2.187  0.717  6.882  
MFO-RRVFL 2.699  1.914  0.495  6.136  
ABC-RRVFL 3.473  2.397  0.762  8.025  
BSO-RRVFL 2.770  2.013  0.616  6.286  
PSO-RRVFL 3.339  2.301  0.645  7.795  

RRVFL 2.765  1.930  0.537  6.299  
RELM 2.754  1.925  0.508  6.295  

BP 2.725  1.873  0.564  6.236  
SVR 2.262  1.551  0.465  5.451  
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Table 8. Chromaticity errors comparisons on Simple Cube++ 
Algorithm Mean Median Best25 Worst25 

MFO-GWO-RRVFL 1.931E-02 1.389E-02 3.810E-03 4.348E-02 
GWO-RRVFL 2.266E-02 1.649E-02 5.703E-03 4.913E-02 
MFO-RRVFL 1.945E-02 1.428E-02 3.800E-03 4.346E-02 
ABC-RRVFL 2.579E-02 1.795E-02 5.865E-03 5.948E-02 
BSO-RRVFL 2.002E-02 1.439E-02 4.726E-03 4.485E-02 
PSO-RRVFL 2.451E-02 1.748E-02 5.115E-03 5.694E-02 

RRVFL 2.006E-02 1.436E-02 4.139E-03 4.501E-02 
RELM 1.994E-02 1.430E-02 3.811E-03 4.493E-02 

BP 1.985E-02 1.499E-02 4.679E-03 4.349E-02 
SVR 1.584E-02 1.073E-02 3.656E-03 3.754E-02 

 
Colour Checker: 
As can be seen from Tables 9-10, the MFO-GWO-RRVFL algorithm still achieved the best 
results in the two indexes of angle error and chromaticity error (Mean and Median). In terms 
of angle error, the MFO-GWO-RRVFL algorithm only got sixth place in the Best25 and got 
second place in the Worst25. The results of the algorithm in Best25 were not very 
satisfactory, which is 0.157 different from the best result. In terms of chromaticity error, the 
MFO-GWO-RRVFL algorithm got second place in Best25 and got first place in Worst25. 
Among them, the results of the MFO-GWO-RRVFL algorithm were 6.31E-04 different from 
the best result. 

 
Table 9. Angle errors comparisons on Colour Checker 

Algorithm Mean Median Best25 Worst25 
MFO-GWO-RRVFL 1.797  1.428  0.610  3.606  

GWO-RRVFL 2.991  2.508  1.067  5.541  
MFO-RRVFL 1.812  1.499  0.585  3.509  
ABC-RRVFL 4.367  3.276  0.973  9.772  
BSO-RRVFL 2.184  1.779  0.453  4.447  
PSO-RRVFL 3.947  3.026  1.421  7.853  

RRVFL 2.292  2.229  0.634  4.346  
RELM 2.433  1.691  0.766  5.121  

BP 2.634  2.266  0.552  5.298  
SVR 2.269  1.731  0.514  4.820  

Table 10. Chromaticity errors comparisons on Colour Checker 
Algorithm Mean Median Best25 Worst25 

MFO-GWO-RRVFL 1.276E-02 9.781E-03 4.633E-03 2.464E-02 
GWO-RRVFL 2.190E-02 2.003E-02 8.221E-03 3.916E-02 
MFO-RRVFL 1.300E-02 1.040E-02 4.695E-03 2.530E-02 
ABC-RRVFL 3.426E-02 2.696E-02 8.264E-03 7.594E-02 
BSO-RRVFL 1.665E-02 1.429E-02 4.002E-03 3.261E-02 
PSO-RRVFL 2.959E-02 2.500E-02 9.941E-03 5.980E-02 

RRVFL 1.700E-02 1.539E-02 4.948E-03 3.196E-02 
RELM 1.794E-02 1.362E-02 6.121E-03 3.662E-02 

BP 2.020E-02 1.581E-02 4.485E-03 4.195E-02 
SVR 1.703E-02 1.338E-02 4.160E-03 3.620E-02 

SFU Grey-ball: 
The experimental data in Table 11 and Table 12 show that the MFO-GWO-RRVFL 

achieves the best performance in Mean, Medium, Best25 and Worst25 of angle error and 
chromaticity error. This result shows that the MFO-GWO-RRVFL proposed in this paper has 
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made some improvement in the lighting correction effect after using a large volume data set 
to avoid some accidental experimental results. 

 
Table 11. Angle errors comparisons on SFU Grey-ball (minimum values are displayed in bold) 

Algorithm Mean Median Best25 Worst25 
MFO-GWO-RRVFL 6.014 4.209 1.925 8.700 

GWO-RRVFL 6.846 5.743 2.906 9.890 
MFO-RRVFL 7.389 6.239 3.421 10.784 
ABC-RRVFL 7.235 6.089 3.094 10.499 
BSO-RRVFL 7.101 6.133 3.123 10.282 
PSO-RRVFL 7.098 6.189 3.042 10.126 

RRVFL 7.417 6.189 3.367 10.948 
RELM 7.586 6.640 3.695 10.902 

BP 8.763 7.562 5.245 12.273 
SVR 7.506 6.566 3.656 10.752 

Table 12. Chromaticity error comparisons on SFU Grey-ball (minimum value is displayed in bold) 
Algorithm Mean Median Best25 Worst25 

MFO-GWO-RRVFL 4.361E-02 2.982E-02 1.411E-02 6.340E-02 
GWO-RRVFL 4.909E-02 3.994E-02 2.072E-02 7.012E-02 
MFO-RRVFL 5.319E-02 4.367E-02 2.483E-02 7.696E-02 
ABC-RRVFL 5.241E-02 4.282E-02 2.199E-02 7.514E-02 
BSO-RRVFL 5.135E-02 4.384E-02 2.257E-02 7.358E-02 
PSO-RRVFL 5.103E-02 4.326E-02 2.236E-02 7.219E-02 

RRVFL 5.325E-02 4.306E-02 2.389E-02 7.862E-02 
RELM 5.459E-02 4.616E-02 2.589E-02 7.708E-02 

BP 6.284E-02 5.319E-02 3.738E-02 8.572E-02 
SVR 5.380E-02 4.569E-02 2.505E-02 7.763E-02 

From the results of these three sets of experiments, we can see that the proposed method 
still has good correction performance, indicating that the method has good robustness. 

6. Conclusion  

In our paper, we proposed the MFO-GWO-RRVFL method to simultaneously optimise the 
input feature and weight, hidden bias and node of the RRVFL by implementing the MFO-
GWO algorithm. The proposed method did not require human intervention to adjust the 
parameters. In addition, it exhibited a fast convergence speed and good searching effect. 
However, when applied to illumination correction, the proposed MFO-GWO-RRVFL 
algorithm exhibited a small angle error and chromaticity error.  
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